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1    Introduction 

Generalized Gaussian quadratures appear to have been introduced by Markov [11, 12] late in 

the last century. More recent expositions include those by Krein [9] and Karlin [8]. Those 

expositions contain proofs of the existence of such quadratures for wide classes of functions; 

however they do not describe a numerical procedure for obtaining the quadrature weights and 

nodes. 

Recently, a paper by Ma et al. [10] described a numerical algorithm for obtaining such 

quadratures. In [10], a version of Newton's method is introduced for the determination of 

nodes and weights of generalized Gaussian quadratures. The procedure of [10] guarantees the 

convergence of the Newton algorithm provided it is started sufficiently close to the solution 

(whose existence is proven in [11, 9, 8]), and utilizes a continuation procedure to provide such 

starting points. The present paper describes a variation of that algorithm, which consists 

mainly of two major changes. The first change is that an entirely different continuation scheme 

is used; with the new continuation scheme, the algorithm is considerably more robust. The 

second change is the addition of a preprocessing step which, given as input a large class of 

functions, uses the singular value decomposition to produce a set of basis functions suitable for 

the algorithm. 

Since a substantial fraction of the algorithm is changed, this paper is written as a repetition 

of [10], rather than as a list of changes; however, the portions dealing with quadratures for 

functions with end-point singularities are omitted. 

This paper is organized in the following manner. Section 2 summarizes the necessary ma- 

terial from [9] and [8]. Section 3 briefly describes certain standard numerical tools used by 

the algorithm. Section 4 contains various analytical results to be used in the construction of 

the algorithm. Section 5 describes the algorithm in detail. Finally, Section 6 contains several 

numerical examples; the actual nodes and weights obtained in Section 6 are listed in Tables 

1-14. 
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2    Mathematical Preliminaries 

We start by introducing some notation.  Given a finite sequence of real numbers x\ < %i < 

• • ■ < xni let the sequence mi,..., mn be defined as follows. 

mi = 0, 
rrij = 0 if j > I and Xj ^ Xj-i, , ■. 
rrij = j — 1 if j > 1 and Xj = Xj^i = ... = x\, 
rrij = k if j > k + 1 and XJ = x_j_i = ... = Xj^k i1 ^j-fc-i ■ 

2.1    Chebyshev systems 

Definition 2.1 A sequence of functions fa,..., fa will be referred to as a Chebyshev system 

on [a, b] if each of them is continuous and the determinant 

fa(xi)    •••   fa(xn) 

(2) 
<t>n(x\)     •••    fa{xn) 

is nonzero for any sequence of points x\,..., xn such that a < X\ < X2 ■ ■ ■ < xn < b. 

An alternate definition of a Chebyshev system is that any linear combination of the functions 

with nonzero coefficients has no more than n zeros. 

A related definition is that of an extended Chebyshev system. 

Definition 2.2 Given a set of functions fa,.. .,<f>n which are continuously differentiable on an 

interval [a,b], and given a sequence of points x\,..., xn such that a < X\ < X2 < ■ ■ ■ <xn <b, 

let the sequence m\,...,mn be defined by (1). Let the matrix C{x\,...,xn) = [c,j] be defined 

by the formula 

Ci> = lx^T{x^ (3) 

in which -J^-(XJ) is taken to be the function value. Then fa,...,<f>n will be referred to as an 

extended Chebyshev system on [a,b] if the determinant \C(xi,...,xn)\ is nonzero for all such 

sequences X{. 

Remark 2.1 It is obvious from Definition 2.2 that an extended Chebyshev system is a special 

case of the Chebyshev system. The additional constraint is that the successive points X{ at which 



the function is sampled to form the matrix may be identical; in that case, for each duplicated 

point, the first corresponding column contains the function values, the second column contains 

the first derivatives of the functions, the third column contains the second derivatives of the 

functions, and so forth; this matrix must also be nonsingular. 

Examples of Chebyshev and extended Chebyshev systems include the following (additional 

examples can be found in [8]). 

Example 2.1  The powers l,x,x2,.. .,xn form an extended Chebyshev system on the interval 

(-00, oo). 

Example 2.2 The exponentials e~XlX, e~X2X,..., e~XnX form an extended Chebyshev system for 

any Aj,..., An > 0 on the interval [0, oo). 

Example 2.3 The functions l,cosx,sina;,cos2x,sin2x,.. .,cosnx,sinna; form a Chebyshev 

system on the interval x 6 [0,27r). 

2.2     Generalized Gaussian quadratures 

The quadrature rules considered in this paper are expressions of the form 

n 

X>^(*;) (4) 

where the points Xj € R and coefficients Wj € R are referred to as the nodes and weights of the 

quadrature, respectively. They serve as approximations to integrals of the form 

rb 
f 4>(x)u(x)dx (5) 

Ja 

where a; is a non-negative function to be referred to as the weight function. 

Quadratures are typically chosen so that the quadrature (4) is equal to the desired integral 

(5) for some set of functions, commonly polynomials of some fixed order. Of these, the classical 

Gaussian quadrature rules consist of n nodes and integrate polynomials of order 2n— 1 exactly; 

these quadratures are used in this paper as a numerical tool (see section 3.2). In [10], the notion 

of a Gaussian quadrature was generalized as follows: 



Definition 2.3 A quadrature formula will be referred to as Gaussian with respect to a set of 

2n functions <f>i,.. .,<f>2n '• [a,b] —>■ R and a weight function u : [a, b] —> R+, if it consists of 

n weights and nodes, and integrates the functions 4>i exactly with the weight function u for all 

i = 1,..., 2n. The weights and nodes of a Gaussian quadrature will be referred to as Gaussian 

weights and nodes respectively. 

The following theorem appears to be due to Markov [11, 12]; proofs of it can also be found 

in [9] and [8]. 

Theorem 2.1 Suppose that the functions <f>i,..., fan : [a, b] —► R form a Chebyshev system on 

[a, b]. Suppose in addition that u : [a, b] -» R is non-negative, and is nonzero at more than n — 1 

points on [a,b]. Then there exists a unique Gaussian quadrature for <f>i,.. .,<f>2n on [a,b] with 

respect to the weight function u. The weights of this quadrature are positive. 

2.3    Total positivity 

A concept closely related to that of an extended Chebyshev system is that of a extended totally 

positive (ETP) kernel: 

Definition 2.4 Given a function K : [a, b] x [c, d] —»■ R which is n times continuously differen- 

tiable, and given a sequence of points xi,...,xn such that c < x\ < X2 < ... < xn < d, let the 

sequence mi,..., mn be defined by (1). Let the functions <f>i,...,<f>n be defined by the formula 

*'■(*) =0^to'')> (6) 

in which 4^r(xj,i) is taken to be the function value. Then K will be referred to as extended 

totally positive if the functions <f>i,...,<f>n form an extended Chebyshev system on [c, d] for all 

such sequences of £,-. 

Examples of ETP kernels include the following (additional examples can be found in [8]). 

Example 2.4 The function e~xt is extended totally positive for x,t € [0, oo). 

Example 2.5  The function e~(x~^   is extended totally positive for x,t € (—oo, oo). 



Example 2.6  The function l/(x + t) is extended totally positive for x,t £ (0, oo) 

A proof of the following lemma can be found in, for example, [8]. 

Lemma 2.2 Suppose that K and L are extended totally positive functions of two variables. 

Then the function M defined by the formula 

rd 
M(x,t)=       K(x,s)L(s,t)ds (7) 

is extended totally positive. In other words, if the kernels of two integral operators are extended 

totally positive, the kernel of the product of the two operators is extended totally positive. 

The following theorem can be found in [8, 7]. 

Theorem 2.3 Suppose that K : [a,b] x [a,b] -> R is an extended totally positive kernel. Then 

the first p eigenfunctions of the integral operator T : L2[a, b] -> I2[a, b] defined by the formula 

(T<f>)(x)=  i K(x,s)<j>(s)ds (8) 
Ja 

constitute an extended Chebyshev system, for any p > 1. 

3    Numerical Preliminaries 

3.1    Newton's Method 

In this section we discuss two well-known numerical techniques:   Newton's method and the 

continuation method. A more detailed discussion of these techniques can be found, for example, 

in [14]. 

Newton's method is an iterative method for the solution of nonlinear systems of equations 

of the form F(x) = 0, where F : R" -► Rn is a continuously differentiate function of the form 

F(x) = 

( /i(z) \ 

V  /n0»0  I 
(9) 



and x — (xi,..., xn)T. The method uses the Jacobian matrix J of F, which is defined by the 

formula 

/!£(*) - f£(*)\ 
/(*)= : : (10) 

Vü?(*) ••• &(*)/ 
Lemma 3.1 Suppose that 

F(y) = 0 (11) 

wit/i F : Rn —► R71 defined by (9), and that \J(y)\ ^ 0, miA | J(y)| denoting the determinant of 

the matrix J(x) defined in (10) at the point y. Given a starting point y$ € Rn, let the sequence 

2/1 > 2/2) • • • be defined by the formula 

yk+i = yk-J~\yk)F(yk). (12) 

Then there exists a positive real number e such that for any i/o satisfying the inequality \\yo—y\\ < 

e, the sequence (12) converges to y quadratically, that is, there exists a positive real number a 

such that 

llste+i -2/11 < (x\\yk-y\\2- (13) 

3.1.1     Continuation method 

In order for Newton's method to converge, the starting point which is provided to it must be 

close to the desired solution. One scheme for generating such starting points is the continuation 

method, which is as follows. 

Suppose that in addition to the function F : Rn —► R" whose zero is to be found, another 

function G : [0,1] x Rn —► Rn is available which possesses the following properties: 

• 1. For any x € R", 

G(l,x) = F(x). (14) 

• 2. The solution of the equation 

G(0,z) = 0 (15) 

is known. 



• 3. For all t € [0,1], the equation 

G{t,x) = 0 (16) 

lias a unique solution x such that the conditions of Lemma 3.1 are satisfied. 

• 4. The solution a; is a continuous function of t. 

If these conditions are met, an algorithm for the solution of F(x) = 0 is as follows. Let the 

points £,-, for i = 1,..., m, be defined by the formula £,• = i/m. Solve in succession the equations 

G{tux)   =   0, 

G(t2,x)   =   0, 

G(tm,x)   =   0 (17) 

using Newton's method, with the starting point for Newton's method for each equation taken 

to be the solution of the preceding equation. The solution x of the final equation G(tm,x) — 0 

is, by (14), identical to the solution of the desired equation F(x) = 0. Obviously, for sufficiently 

large m, Newton's method is guaranteed by Lemma 3.1 to converge at each step. 

Remark 3.1 In practice, it is desirable to choose the smallest m for which the above algorithm 

will work, in order to reduce the computational cost of the scheme. On the other hand, the 

largest step it- — Jj_i for which the Newton method will converge commonly varies as a function 

oft.  Thus, in this paper, we use an adaptive version of the scheme. 

3.2    Gaussian integration and interpolation 

Classical Gaussian quadrature rules are a well-known numerical tool (see for instance [14]); 

they integrate polynomials of order 2n - 1 exactly with respect to some weight function, and 

consist of n weights and nodes. A variety of Gaussian quadratures were analyzed in the last 

century, each being denned by a distinct weight function. Of these, the algorithm presented in 

this paper uses only the Gaussian quadratures for the weight function u>{x) = 1 on the region 



of integration [—1,1]. These quadratures are closely associated with the Legendre polynomials; 

we will refer to their nodes as Legendre nodes. 

Another numerical tool used in this paper is polynomial interpolation on Legendre nodes. 

Interpolation refers to the following problem: given two finite real sequences /i,...,/„€R and 

xi,...,xn € [a, b], construct a function / : [a, 6] —»• R such that /(a;,-) = /,• for all i = 1,..., n. 

An interpolation scheme is referred to as linear if the function / depends linearly on the values 

/,-. One linear interpolation scheme is polynomial interpolation, in which the interpolating 

function / is a polynomial of degree n - 1. As is well-known, such a polynomial always exists 

and is unique. However, in general two numerical difficulties arise with polynomial interpolation 

using polynomials of high order. The first is that for many sequences of points z,-, the values 

of the interpolating polynomial between the points a;,- are not well-conditioned as a function 

of the values /,• to be interpolated. The second is that even for those sequences of points 

where the computation of the values of the interpolating polynomial is well-conditioned, the 

computation of the coefficients of the power series of the interpolating polynomial is extremely 

ill-conditioned. 

As is well-known, these difficulties do not arise if the points z,- are taken to be Chebyshev 

nodes and the interpolating polynomial is computed as a series of Chebyshev polynomials rather 

than as a power series. As the following lemma shows, the difficulties also do not arise if the 

points Xi are taken to be Legendre nodes and the interpolating polynomial is computed as 

a series of Legendre polynomials. The lemma makes use of the following properties of the 

Legendre polynomials: first, that the i'th Legendre polynomial P; has degree i; second, that 

the polynomials Pi form an orthonormal system of functions on [—1,1]. 

Lemma 3.2 Suppose that Xi,...,xn € [—1,1] are the Legendre nodes of order n, and that 

Wi,...,wn € R are the associated Gaussian weights. Given a sequence f\,..., fn € R, let 

p : [—1,1] —*• R be the interpolating polynomial of degree n - 1 such that p(x{) = /,• for all 

i = 1,..., n, and let CQ, ■ ■., c„_i be the coefficients of the Legendre series of p; that is, 

n-l 

p{x)=YJclPi{x), (18) 
j'=0 



where Pi(x) is the i'th Legendre polynomial.  Then the following relation holds: 

-1 n—1 

t=l J~1 i=0 

(19) 

Proof. The second equality of (19) follows from (18) and the orthonormality of the Legendre 

polynomials. The first equality may be proven as follows: the polynomial p has degree n — 1, 

thus its square has degree 2n - 2. Since the Gaussian quadrature integrates exactly all polyno- 

mials up to order 2n - 1, it integrates p2 exactly; thus the first equality of (19) holds. □ 

3.3 Singular value decomposition 

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, which is 

given for the case of real matrices by the following lemma (see, for instance, [3] for more details). 

Lemma 3.3 For any n x m real matrix A, there exists an n X p matrix U with orthonormal 

columns, an m x p matrix V with orthonormal columns, and a p x p real diagonal matrix 

S = [sij] whose diagonal entries are non-negative, such that A = USV* and that sa < s,-+i,t+i 

for all i = 1,..., p — 1. 

The diagonal entries s,- of S are called singular values; the columns of the matrix V are 

called right singular vectors; the columns of the matrix U are called left singular vectors. 

3.4 Singular value decomposition of integral operators 

This section, which follows [5], contains an existence theorem for a factorization of integral 

operators. The operators T : L2[c, d] -> L2[a, b] to which it applies are of the form 

(Tf)(x) = J" K(x,t)f(t)dt. (20) 

in which the function K : [a, b] x [c, d] —*• R is referred to as the kernel of the operator T. 

Throughout this section, it will be assumed that all functions are square-integrable; the term 

"norm" will mean the L2 norm. 

The following theorem, which defines the factorization, is proven in a more general form as 

Theorem VI.17 in [13]. 



Theorem 3.4 Suppose that the function K : [a, b]x[c,d]-+JL is square integrable. Then there 

exist two orthonormal sequences of functions U{ : [a, b] —*■ R and Vi : [c, d] —* R and a sequence 

Si € R, for i = 1,..., oo, such that 

K(x,t) = ^2ui(x)siVi(t) (21) 

and that si > S2 > ■ ■ ■ > 0. The sequence st- zs uniquely determined by K. Furthermore, the 

functions V{ are eigenfunctions of the operator T*T, where T is defined by (20), and the values 

si are the square roots of the eigenvalues ofT*T. 

By analogy to the finite-dimensional case, we will refer to this factorization as the singular 

value decomposition. We will refer to the functions U{ as left singular functions of K (or of T), 

to Vi as right singular functions, and to s,- as singular values. 

As is the case for the discrete singular value decomposition, this decomposition can be used 

to construct an approximation to the function K, by discarding small singular values and the 

associated singular functions: 

A'(z,*)-E^(z)w(*)- (22) 
t=i 

The error of this approximation can then be computed from (21): 

p 

K(x,t) -Y,Ui(x)siVi(t) =   J2  Ui(x)siVi(t), 
i=p+l t=l 

and, therefore, 

K(x,t) -^2ui(x)siVi(t) 
»=i \i=P+l 

Using (24), we will be approximating integrals 

rb 
f K{x,t)uj(x)da 

Ja 

(23) 

(24) 

(25) 

by the formula 

/   K(x,t)u(x)dx   ~     /   )y Uj(x)sjVi(t)üj(x)dx 
Ja Ja   j=1 

P rb 
~   Y2siVi(t) /   Ui(x)v(x)da 

.•_i Ja, 
(26) 
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Thus, a quadrature which is exact for each of the integrals 

rb 
/  Ui(x)u(x)dx, (27) 

Ja 

for i = 1,.. ..,p, is an approximate quadrature for integrals of the form (25). 

The following theorem shows that if an operator is extended totally positive, its singular 

functions form an extended Chebyshev system. 

Theorem 3.5 Suppose that K : [a, b] x [c, d] —► R is extended totally positive. Then the first p 

left singular functions of K form an extended Chebyshev system, for any p; likewise the first p 

right singular functions of K form an extended Chebyshev system, for any p. 

Proof. Let the integral operator T : L2[c, d] —> L2[a, b] be defined by the formula 

(Tf)(x) = £dK(x,t)f(t)dt, (28) 

and the function L : [a, b] —>■ [a, b] be defined by the formula 

rd 

L(x,t)=      K(x,s)K(t,s)ds. (29) 

Clearly, the integral operator S : L2[a,b] —>■ L2[a,b] defined by the formula 5 = T*T has the 

kernel L: 

rb   rd 
(S4>)(x)   =    I   f  K(x,s)K(t,s)ds<f>(t)dt 

Ja   Je 

=    / L(x,t)<t>(t)dt. (30) 
Ja 

Since K is extended totally positive, due to Lemma 2.2, L is also extended totally positive. 

Thus, by Theorem 2.3, the eigenfunctions of S constitute an extended Chebyshev system. By 

Theorem 3.4, these eigenfunctions are identical to the left singular functions of T, which proves 

that the first p left singular functions of T constitute an extended Chebyshev system, for any 

p. The proof for the right singular functions is identical. D 
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4    Analytical Apparatus 

4.1    Convergence of Newton's method 

In this section, we observe that the nodes and the weights of a Gaussian quadrature satisfy a 

certain system of nonlinear equations. We then prove that the Newton method for this system of 

equations is always quadratically convergent, provided the functions to be integrated constitute 

an extended Chebyshev system. 

Given a set of functions <f>i,.. .,<f>2n and a weight function u, the Gaussian quadrature is 

defined by the system of equations 

rb " rb 

^Wifatxi)   =     /   <fa,(x)u(z)dx, 
3=1 Ja 

n rb 

Y^WiMXi)     =       /    <l>2(x)u(x)dx, 
Ja 

" rb 

J2vi<f>2n(xi)     =       /    <f>2n{x)oj(x)dx (31) 
3=1 Ja 

(see Definition 2.3). Let the left hand sides of these equations be denoted by /i through /2n- 

Then each /,- is a function of the weights w\,..., wn and nodes xi,...,xn of the quadrature. 

Its partial derivatives are given by the obvious formulae 

H = M*i), (32) 

|| = w^xi). (33) 

Thus, the Jacobian matrix of the system (31) is 

/  fafa)    •••    <t>\{xn)     u?i#(xi)    •••    wn<j>[(xn)  \ 

J(x1,...,xn,w1,...,wn) = \ \ \ \ (34) 

\  <hn(xi)     •••     4>2n{Xn)     Wl<t>2n(Xl)     •"     ™n<f>2n(xn)  / 

Lemma 4.1 Suppose that the functions <f>i,.. .,<fon form an extended Chebyshev system. Let 

the Gaussian quadrature for these functions be denoted by W{ and X{. Then the determi- 

nant of J is nonzero at the point which constitutes the Gaussian quadrature; in other words, 

\J(x1,...,xn,wi,...,wn)\ # 0. 

12 



Proof. It is immediately obvious from (34) that 

J(xi,...,xn,wl,...,wn)\ = 

Mxi)    •••    <t>i(xn)     #(si)    •••    4{(xn) 
wi -w2 t&n-i • ün - • • : (35) 

fanfa)     •••    <f>2n{xn)     (f>'2n{xl)     "■     4K) 

If <£i,..., <^>2n form an extended Chebyshev system, then by Theorem 2.1, the weights wi,..., wn 

of the Gaussian quadrature are positive. In addition, by the definition of an extended Chebyshev 

system, the determinant in the right hand side of (35) is nonzero. Thus 

\J(xu...,xn,Wi,...,Wi)\ # 0. (36) 

D 

Corollary 4.2  Under the conditions of Lemma 4-1, the Gaussian weights and nodes depend 

continuously on the weight function. 

4.2    Linear interpolation 

Given a collection of n points xj,x2,.. .,xn € [a,b], an interpolation scheme with the nodes 

xi,x2, • • -,xn is a linear mapping L : Rn —»• L°°[a,b] such that for any point t/6R", 

L(y)(xi) = Vi, (37) 

for all i = 1,2,. ..,n.   For a function / € L°°[a,b], the error £/_(/) of interpolation of the 

interpolation scheme L is defined by the formula 

hU)= m*x\f(x)-L(F)(x)\ (38) 
x£[a,b] 

where F = (f(Xl), f(x2),..., f{xn))T. 

The following lemma serves as a justification for the notation we use in Section 4.3 for linear 

interpolation schemes. 

13 



Lemma 4.3 Suppose L : Rn —»■ L2[a, b] is a linear interpolation scheme with n nodes 

x\,...,xn € [a,b]. Then there exists a sequence of functions oti,...,an : [a,b] —> R such 

that for any vector f € Rn, with elements / = (/i,.. •, fn)T, 

(!/)(*) = £/,-*(*), (39) 
t=i 

for all x £ [a,b]. 

Proof. Let the vectors ci,..., en € R" with elements e, = (e,i,..., etn)T be the standard basis 

in Rn; that is, en = 1 for all i = 1,..., n, and e^ = 0 for all i, j = 1,..., n such that i ^ j. Let 

the functions ai,..., an : [a, b] —*■ R be defined by the formula a^ = Xe,-. Since the interpolation 

scheme L is linear, for any vector / € Rn with elements / = (/i,.. .,/n)
T, and for any point 

i € [a,&], 

(Lf)(x)    =    (i(t/,-e,))w 

=    E/s(Les)(x) 
»=i 

=    £/,■<*,■(*). (40) 
»=i 

D 

In the case of polynomial interpolation, the functions a; are referred to as Lagrange polynomials; 

by analogy to that case, we will in general refer to the functions a,- as the Lagrange functions 

of the interpolation scheme. 

The following lemma provides an error bound for approximation of a function of two vari- 

ables using two one-dimensional interpolation formulae, expressed in terms of error bounds 

for each one-dimensional interpolation scheme applied separately. Its proof is an exercise in 

elementary analysis, and is omitted. 

Lemma 4.4 Suppose that xi,x2,.. .,xn € [a,b] and ti,t2,...,tm G [c,d] are two finite real 

sequences, and that ai,a2,...,ctn : [a,b] -» R and ßi,ß2,---,ßm '■ [c,d] —► R are two sequences 

of bounded functions. Suppose further that L\ : Rn ->• L°°[a,b] is an interpolation formula 

with the nodes xi,...,xn and Lagrange functions Qi,...,an, and Li : Rm —► L°°[c,d] is an 
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interpolation formula with the nodes ti,...,tm and Lagrange functions ßi,...,ßm.   Suppose 

that r\ € R is such that 
n 

EK-WI<^ (41) 
»=1 

for all x € [a,b], and 
771 

5>;(')l<* (42) 

for all t £ [c,d\.   Finally, suppose that K is a function [a,b] x [c,d] —► R, and that for all 

x £ [a, 6] and £ € [c, d], 

K(x,t)-J2K(xi,t)ai(x) 
t=i 

and 

Then 

< £ 

< e. 

»'=1 i=i 

/or a// a; € [a, 6] and t € [c, d]. 

< £(1 +-"), 

(43) 

(44) 

(45) 

4.3    Approximation of SVD of an integral operator 

This section describes a numerical procedure for computing an approximation to the singular 

value decomposition of an integral operator. 

The algorithm uses quadratures which possess the following property. 

Definition 4.1   We will say that the combination of a quadrature and a linear interpolation 

scheme preserves inner products on an interval [a, b] if it possesses the following properties. 

• 1. The nodes of the quadrature are identical to the nodes of the interpolation scheme. 

• 2.   The quadrature integrates exactly any product of two interpolated functions; that is, 

for any two functions /, g : [a, b] —>■ R produced by the interpolation scheme, the integral 

rb 

I Ja 
f(x)g(x)dx (46) 

is computed exactly by the quadrature. 
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Quadratures and interpolation schemes which possess this property include: 

Example 4.1 The combination of a (classical) Gaussian quadrature at Legendre nodes and 

polynomial interpolation at the same nodes preserves inner products, since polynomial interpo- 

lation on n nodes produces an interpolating polynomial of order n — 1, the product of two such 

polynomials is a polynomial of order 2n — 2, and a Gaussian quadrature integrates exactly all 

polynomials up to order 2n - 1. 

Example 4.2 If an interval is broken into several subintervals, and a quadrature and interpo- 

lation scheme which preserves inner products is used on each subinterval, then the arrangement 

as a whole preserves inner products on the original interval. (This follows directly from the 

definition.) 

Example 4.3 The combination of the trapezoidal rule on the interval [0,2ir], and Fourier in- 

terpolation (using the interpolation functions 1, cos x, sin x, cos 2x, sin 2x,.". . ,cosn£,sinraz,) pre- 

serves inner products. 

The algorithm takes as input a function K : [a, b] x [c, d] ->■ R. It uses the following numerical 

tools: 

• 1. A quadrature and a linear interpolation scheme on the interval [a, b] which preserve 

inner products. Let the weights and nodes of this quadrature be denoted by wf,..., w* € 

R and xi,...,xn € [a, b] respectively. Let the Lagrange functions (see Section 4.2) of the 

interpolation scheme be denoted by ct\,..., an : [a, b] —► R. 

• 2. A quadrature and a linear interpolation scheme on the interval [c, d] which preserve 

inner products. Let the weights and nodes of this quadrature be denoted by w\,..., wf
m £ 

R and ti,...,tm € [c,d] respectively. Let the Lagrange functions of the interpolation 

scheme be denoted by ß\,..., ßm : [c, d] —» R. 

As will be shown below, the accuracy of the algorithm is then determined by the accuracy to 

which the above two interpolation schemes approximate K. 
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The output of the algorithm is a sequence of functions u\,..., up : [a, b] -* R, a sequence of 

functions vi,...,vp : [c,d] —► R, and a sequence of singular values s\,...,sv € R, which form 

an approximation to the singular value decomposition of K. 

Description of the algorithm: 

• 1. Construct the n x m matrix A = [a,-j] defined by the formula 

aij = K{züti)ylw?-w). (47) 

• 2. Compute the singular value decomposition of A, to produce the factorization 

A = USV, (48) 

where U = [uij] is an n x p matrix with orthonormal columns, V = [v,-j] is an m x p 

matrix with orthonormal columns, and S is a p x p diagonal matrix whose j'th diagonal 

entry is Sj. 

• 3. Construct the n x p matrix U = [uij] and the m x p matrix V = [iiij] defined by the 

formulae 

Uik     =     Uik/y/wf, (49) 

»jfc    =    Vjk/yjtf- (50) 

• 4.   For any points x € [a,b] and t G [c,d], evaluate the functions Uk : [a, 6] —»• R and 

Vk ■ [c, d] —»■ R via the formulae 

n 
ufc(a;)   =   5Ztt,-fc-a,-(x), (51) 

TO 

«*(<)    =    E^'/'JC*), (52) 

for all & = 1,.. .,p. 

Theorem 4.5 Suppose that the combination of the quadrature with weights and nodes 

wf,...,w*€.R and xi,...,xn € [a,b], respectively, and the interpolation scheme with Lagrange 

functions aa,..., an : [a, b] —> R, preserves inner products on [a, 6]. 
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Suppose in addition that the combination of the quadrature with weights and nodes 

w[,..., wx
m € R and ti,...,tm € [c, d], respectively, and the interpolation scheme with Lagrange 

functions ß\,..., ßm : [c, d] -* R, preserves inner products on [c,d]. 

For any function K : [a, b] x [c, d] —> R, /et u,- : [a, 6] —► R, v, : [c, d] —► R, and Si € R be 

defined in (47)-(52), for all i = 1,.. .,p. Then 

• 1. The functions Ui are orthonormal, i.e 

rfc 
/   Ui(x)uk(x)dx = Sik (53) 

Ja 

for all i, k = 1,.. .,p, with Sik the Kronecker symbol (Sij = 1 if i = j, 0 otherwise). 

• 2.  The functions V{ are orthonormal, i.e. 

j   vi{t)vk{t)dx = Sik (54) 

for all i,k = l,...,p. 

• S.  The function K : [a, b] x [c, d] —»• R defined by the formula 

v 
K{x, *) = E SjUj(x)vj(t), (55) 

is identical to the function produced by sampling K on the grid of points (xi,tj), then 

interpolating with the two interpolation schemes. That is, 

71       771 

K(x, t) = Y, E * (**> *;M*)&(0- (56) 

Proof. We first prove (56). Combining (51), (52), and (55), we have 

K(x,t) = E«fcff;ttfc(xo«.-(*))(i:^K)A-(<)] 
n     m    /  p \ 

= E E E «*(*o**f*(«>*) <*<•(*)&-(*) 
n     m    /  p \ 

= EE E(WV<K(<W\/^) <*(*)&(<) 
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n    m    /  p  \ 

i=lj=zl \k=l ) 

=   EE^/^"«-^)^)- (57) 
i=i i=i 

Now, (56) follows from the combination of (57) and (47). 

We now demonstrate the orthonormality of the functions U{.   Since these are functions 

produced by interpolation, and since the quadrature on [a, b] is assumed to integrate exactly 

all products of pairs of interpolated functions, 

rb 
/   Ui{x)uk(x)dx   =    ^2w]ui(xj)uk{xj) 

n 

=    ^w](uiil^J™j)(uJkl\fiüj) 
1=1 

n 

~     J2UHUil<- (58) 
j=l 

Since the last sum in (58) is the inner product of two columns of the orthonormal matrix U 

(see (48), 

/   Ui{x)uk{x)dx = 6ik. (59) 
Ja 

The orthonormality of the functions t>,- is proven in the same manner. D 

Remark 4.1 Obviously, the above proof approximates the singular value decomposition of the 

operator T : L2[c, d] -* L2[a, b] with the kernel K by constructing an approximation f with 

kernel K to the operator T that is of finite rank, and constructing the exact singular value 

decomposition of the latter. 

Observation 4.2 In the preceding proof, the assumption that each combination of quadrature 

and interpolation scheme preserves inner products was used only to demonstrate the orthonor- 

mality of the corresponding singular functions. Thus, if the conditions of Theorem 4-5 hold, 

with the exception that the quadrature on [a, b] does not preserve inner products, then (54) and 

(56) hold (but, in general, (53) does not). 
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Remark 4.3 Theorem 4-5 and Lemma 4-4 generalize trivially to higher dimensions. One- 

dimensional quadratures and interpolation formulae have to be replaced with their multidimen- 

sional counterparts; otherwise, the proofs are unchanged. 

5    Numerical Algorithm 

This section describes a numerical algorithm for the evaluation of nodes and weights of gen- 

eralized Gaussian quadratures. The algorithm's input is a sequence of functions <j>\,.. .,<f>2n '• 

[a,b] —► R which form an extended Chebyshev system on [a, b], and a weight function u\ : 

[a,b] —»• R+. Its output is the weights and nodes of the quadrature. The main components of 

the algorithm are as follows (not listed in order of execution): 

• 1. Newton's method is used to solve (31) which defines the Gaussian quadrature. 

• 2. An adaptive version of the continuation method (Section 3.1.1) is used to provide 

starting points for Newton's method. The continuation scheme used here is different from 

that used in [10]; the details of the continuation scheme and of the method of adaption 

are described below. 

• 3. The algorithm of section 4.3 can be used as an optional preprocessing step, which takes 

as input a kernel of an integral operator and produces its singular functions. The first 2n 

of the left singular functions are then used as input to the main algorithm. 

5.1     Continuation Scheme 

The continuation scheme used is as follows. Let the weight functions u> : [0,1] x [a, b] —»■ R+ be 

defined by the formula 

n 

u>(a,x) = au>i(x) + (1 -a)^£(x - Cj), (60) 

where u)\ is the weight function for which a Gaussian quadrature is desired, 6 denotes the Dirac 

delta function, and the points Cj £ [a, 6] are arbitrary distinct points. These weight functions 

have the following properties: 

20 



• 1.  With a = 1, the weight function is equal to the desired weight function u\, due to 

(60). 

• 2. With a = 0, the Gaussian weights and nodes are 

WJ    =    1, (61) 

Xj    =    Cj, (62) 

for j = 1,..., n, whatever the functions fa are (since u;(0, x) = 0, unless x = Cj for some 

j€[l,n]). 

• 3. The quadrature weights and nodes depend continuously on a (by Corollary 4.2). 

The intermediate problems which the continuation method solves are the Gaussian quadratures 

relative to the weight functions u>(a,*). The scheme starts by setting a = 0, then increases a 

in an adaptive manner until a = 1, as follows. A current step size is maintained, by which a 

is incremented after each successful termination of Newton's method. After each unsuccessful 

termination of Newton's method, the step size is halved and the algorithm restarts from the 

point yielded by the last successful termination. After a certain number of successful steps, the 

current step size is doubled. (Experimentally, the current problem was found to be well suited 

to an aggressive mode of adaption: in the authors' implementation, the initial value of the step 

size was chosen to be one, and the step size was doubled after a single successful termination 

of Newton's method.) 

5.1.1    Starting points 

The choice of the points CJ was left indefinite above. In exact arithmetic the algorithm would 

converge for any choice of distinct points (see Lemma 4.1). However the number of steps of the 

continuation method, and thus the speed of execution, is affected by the choice. More impor- 

tantly, the numerical stability of the scheme might be compromised due to poor conditioning of 

the matrix J (see (34)). Indeed, while Lemma 4.1 guarantees that the matrix J is non-singular, 

it says nothing about its condition number. Thus, in the authors' implementation, the points 
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Cj used for the production of the quadrature of order n were computed from the nodes Xj of 

the quadrature of order n - 1, by the formulae 

C!    =   xi, (63) 

d   =   (st,-_i + Xi)/2, t = 2,...,n-l, (64) 

cn    =   xn-i. (65) 

With this choice, no failures to converge have been encountered in the authors' experience. 

6    Numerical examples 

A variety of quadratures were generated to illustrate the performance of the above algorithm. 

In each case the preprocessing step of producing singular functions was used. This step requires 

two sets of quadratures and interpolation schemes, which must approximate the desired kernel 

to the desired accuracy. These quadratures and interpolation schemes were chosen so that 

the approximation was accurate to about the precision of the arithmetic that was used. The 

following combination of quadrature and interpolation scheme which preserves inner products 

was used: the interval of integration was divided into several subintervals, and a combination 

of a (classical) Gaussian quadrature at Legendre nodes and polynomial interpolation was used 

on each subinterval. 

In each of the following examples, the calculations were done in extended precision (Fortran 

REAL* 16) arithmetic, with the exception of the last example, which was done in double precision 

(REAL*8) arithmetic. 

6.1    Exponentials 

In this example we construct quadratures for the integral 

COO 

e~xtdx, (66) 
Jo /o 

under the condition that 1 < t < 500.   In this case, the corresponding kernel K : [0,oo) x 

[1,500]-» R is given by 

K(x,t) = e-Xt, (67) 
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and is extended totally positive; thus its singular functions form an extended Chebyshev system. 

A sample of the quadratures produced by the algorithm is included in Tables 1-3; for double 

precision accuracy, a 27-point quadrature is required. 

6.2    Complex Exponentials 

Here, we design quadratures for a new version [5] of the two-dimensional Fast Multipole Method. 

These quadratures are for the integral 

r. 
Jo 

e~xzdx, (68) 
o 

under the condition that z € C is constrained to he in the region D of the complex plane which 

consists of the rectangle [1,4] X [-4,4] with a 1 X 1 square deleted from each of its two left hand 

corners, as depicted in Figure 1. Since both the true integral (equal to 1/z) and the quadrature 

which approximates the integral are complex analytic on that region, due to the maximum 

modulus principle the maximum error of the quadrature is achieved on the boundary 8D of the 

region. Accordingly, the kernel whose singular functions were computed was K(x,z) = e~xz, 

with z varying over 6D. A brief examination of the resulting singular functions shows that they 

do not form a Chebyshev system; if they did so, the i'th function would have i - 1 zeros, yet it 

has many more. Thus the algorithm is not guaranteed to work; however, it did so. A sample 

of the resulting quadratures is included in Tables 4-6; in this case a quadrature yielding double 

precision accuracy contains 32 nodes. 

6.3    Exponentials multiplied by IQ 

In this example, quadrature formulae are constructed for integrals of the form 

I0{xy)e-Xtdx, (69) 
Jo Jo 

under the condition that t € [1,500] and y € [0,< - 1]; these formulae were designed to be used 

in a version of the one-dimensional Fast Multipole Method which is used in an algorithm [6] for 

the fast Hankel transform. In this case the singular functions produced by the precomputation 

stage were extremely similar to those for exponentials alone; unlike in the case of complex 
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Figure 1: Coefficient z of complex exponentials to be integrated 

exponentials, it is possible that they form a Chebyshev system. In any case, the algorithm 

converged, producing a quadrature which required two more nodes for double precision accuracy 

than were required for the integration of exponentials alone (i.e. 29 nodes). A sample of the 

resulting quadratures is included in Tables 7-9. 

6.4    Exponentials multiplied by J0 

Here, we construct quadratures for the integral 

Jo 
Jo{xy)e x dx, (70) 

under the conditions that t € [1,4] and y 6 [0,4\/2], where Jo denotes the Bessel function of the 

first kind of order zero. These quadratures are used in a new version [4] of the three-dimensional 

Fast Multipole Method. Jo is given by the well-known (see for instance [1]) formula 

1   fv 

J0(y) = —       cos(y cos 9)<L6. 
7T Jo 

(71) 
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Substituting (71) into (70) yields the integral 

/     ( — /   cos(xy cos 9)d6) e~xtdx 

I       [-7T      f<X> 

=    - /    /    cos(xy cos 9)e~xtdxde. (72) 
7T Jo    Jo 

Thus a quadrature accurate for the integral 

TOO 

/    cos(xy)e~xtdx, (73) 
Jo 

under the conditions that t £ [1,4] and y e [0,4-\/2], is also accurate for the integral (70) under 

the same conditions on y and t. Since the function cos(xy)e~xt is a harmonic function of y 

and t, by the maximum modulus principle the maximum error of a quadrature for (73) lies 

on the boundary SD of the rectangular region t 6 [1,4], y € [0,4\/2]. Accordingly, the kernel 

whose singular functions were computed was K(x,z) = cos(xy)e~xt, with (t,y) varying over 

SD. As in the case of complex exponentials, the singular functions have too many zeros to form 

a Chebyshev system, however the algorithm converged. A sample of the resulting quadratures 

is included in Tables 10-14; for single precision accuracy 22 nodes are required. 

6.5    Numerical Observations 

The following observations were made in the course of our numerical experiments. 

• 1. The number of continuation steps required is highly variable; in many cases, only one 

step sufficed to produce the quadrature; less frequently, up to fifty or so continuation 

steps were required. This variability occurred even between quadratures for successive 

numbers n of nodes, with the same weight function and kernel K. 

• 2. The algorithm worked in the cases where Theorem 2.1 applied, and also in cases where 

it did not. In the latter cases, it is conceivable that the resulting quadratures would have 

negative weights, or that they would not be unique. However, all computed weights were 

positive, and, while no systematic attempt was made to look for non-uniqueness of the 

quadratures, no instance of it was observed. 
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7    Generalizations and Applications 

• 1. The success of the algorithm in instances where Theorem 2.1 does not apply sug- 

gests that further theoretical investigation of conditions for the existence of generalized 

Gaussian quadratures would be profitable. 

• 2. An obvious generalization of these results is to quadratures for integrals in more than 

one dimension. However, such an extension does not seem to have been explored classi- 

cally; the authors are investigating a generalization of Theorem 2.1 for multidimensional 

quadratures. 

• 3. An obvious application of the algorithm of this paper is for the efficient evaluation of 

functions represented by their integral transforms (see Sections 6.1, 6.2, 6.3, 6.4 above, 

as well as [5] and [4]). The method of steepest descent in the numerical complex analysis 

provides a wide field of applications for such algorithms.   . 

• 4. An entirely different field of applications involves the numerical solution of integral 

equations with singular kernels; of particular interest are boundary integral equations 

of scattering theory on regions with corners. The authors are currently pursuing this 

direction of research. 
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Table 1: Quadratures for exponentials 

Quadratures for the integral 

r Jo 
e     dx, 

under the condition that 1 < t < 500. 

N Nodes (x{) Weights (wi) Error 

6 0.2934661296034111E-02 
0.2122706574797170E-01 
0.8809516681098265E-01 
0.3048205241689060E+00 
0.9407821348001514E+00 
0.2710823671107057E+01 

0.8078894059616301E-02 
0.3337852721645502E-01 
0.1157432569817795E+00 
0.3589923073929015E+00 
0.1018252445219498E+01 
0.2863049428178813E+01 

0.827E-03 

8 0.2027451178542047E-02 
0.1244627909236754E-01 
0.4102057941602644E-01 
0.1144937922230447E+00 
0.2954175879426304E+00 
0.7210624530246545E+00 
0.1687074064747948E+01 
0.3896282168946610E+01 

0.5378159157423945E-02 
0.1689195281391659E-01 
0.4443355769152601E-01 
0.1123335780703449E+00 
0.2711448390160103E+00 
0.6264263367286485E+00 
0.1408860943521751E+01 
0.3344043060866228E+01 

0.726E-04 

14 0.1075073588251350E-02 
0.5889243490962496E-02 
0.1560078432135377E-01 
0.3258052212086110E-01 
0.6154351752779967E-01 
0.1109619891032348E+00 
0.1951651530857407E+00 
0.3377699882687942E+00 
0.5772805419211481E+00 
0.9761165652290038E+00 
0.1635615445691163E+01 
0.2723809484786727E+01 
0.4541163041303490E+01 
0.7767616655342678E+01 

0.2783455121689438E-02 
0.7006395914900820E-02 
0.1279502133157069E-01 
0.2192733340131016E-01 
0.3737740049082059E-01 
0.6379243969367225E-01 
0.1084594588227473E+00 
0.1830223278438481E+00 
0.3061647832783700E+00 
0.5079755103629931E+00 
0.8381174751258640E+00 
0.1385562498413431E+01 
0.2347348786059432E+01 
0.4444622409829190E+01 

0.366E-07 
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Table 2: Quadratures for exponentials (continued) 

Quadratures for the integral 

Jroo 
'     e~xtdx, 
o 

under the condition that 1 < t < 500. 

N Nodes (x{) Weights (wi) Error 
23 0.6351980115825126E-03 

0.3390398468501349E-02 
0.8533988111011606E-02 
0.1642520313864894E-01 
0.2767253774178896E-01 
0.4324590958238922E-01 
0.6462964536146855E-01 
0.9401198766143719E-01 
0.1345150809637970E+00 
0.1904922248317389E+00 
0.2679364541057184E+00 
0.3750493014038291E+00 
0.5230239495194809E+00 
0.7271139907371750E+00 
0.1008092183746637E+01 
0.1394262856335610E+01 
0.1924307475579603E+01 
0.2651497602918851E+01 
0.3650430825998876E+01 
0.5029133182526411E+01 
0.6954672288346456E+01 
0.9721470480335499E+01 
0.1402158019660932E+02 

0.1635014749191032E-02 
0.3906005173541682E-02 
0.6439810761063304E-02 
0.9442176581726002E-02 
0.1321157735118120E-0J 
0.1817939708425140E-01 
0.2494901611240477E-01 
0.3433118358535485E-01 
0.4739385869478771E-01 
0.6554991255546435E-01 
0.9069257914926255E-01 
0.1253810727774845E+00 
0.1730865464562759E+00 
0.2385227411097447E+00 
0.3281047583403605E+00 
0.4506156991375293E+00 
0.6182455916131797E+00 
0.8483813375121229E+00 
0.1167112116649273E+01 
0.1617207388482339E+01 
0.2279901680035951E+01 
0.3352383978313540E+01 
0.5608355831510393E+01 

0.356E-12 
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Table 3: Quadratures for exponentials (continued) 

Quadratures for the integral 

'    e~xtdx, 
o 

under the condition that 1 < t < 500. 

N Nodes (a;,-) Weights (w{) Error 

27 0.5378759010624780E-03 
0.2860176825815242E-02 
0.7148658617716300E-02 
0.1360965515937845E-01 
0.2257800188133212E-01 
0.3456421989535069E-01 
0.5032042618508775E-01 
0.7092509447124836E-01 
0.9788439120828463E-01 
0.1332509921950535E+00 
0.1797695570864978E+00 
0.2410654714132133E+00 
0.3218961915636380E+00 
0.4284852078938826E+00 
0.5689615509235298E+00 
0.7539347736933301E+00 
0.9972472224438443E+00 
0.1316964566299846E+01 
0.1736698582009859E+01 
0.2287418444638146E+01 
0.3010034073439038E+01 
0.3959315495048493E+01 
0.5210381702393131E+01 
0.6870768194824406E+01 
0.9106577764323245E+01 
0.1221294512896673E+02 
0.1689348652665484E+02 

0.1383311204046008E-02 
0.3279869733166365E-02 
0.5330932895600203E-02 
0.7646093110803760E-02 
0.1037458793227033E-01 
0.1372178039022047E-01 
0.1796868836009351E-01 
0.2348971809947674E-01 
0.3076860552710760E-01 
0.4041894092839717E-01 
0.5321827718681367E-01 
0.7016094768858448E-01 
0.9253048536912244E-01 
0.1219928996130354E+00 
0.1607156476580828E+00 
0.2115215602167892E+00 
0.2780925850550500E+00 
0.3652478333806065E+00 
0.4793398853949993E+00 
0.6288554258416082E+00 
0.8254021100491956E+00 
0.1085495633209734E+01 
0.1434174907278760E+01 
0.1913323186889750E+01 
0.2604342790201154E+01 
0.3708436699287805E+01 
0.6023086156615004E+01 

0.323E-14 

30 



Table 4: Quadratures for complex exponentials 

Quadratures for the integral 

/•CO 

/    e-**dx, 
Jo 

under the condition that z € C lies in the region D of the complex plane depicted in Figure 1. 

N 

10 

17 

Nodes (x{) 

0.1099271618238942E+00 
0.5491694162336780E+00 
0.1271416827286341E+01 
0.2239523056474301E+01 
0.3446836330005198E+01 
0.4877666068772302E+01 
0.6502607915187052E+01 

0.7940097370047949E-01 
0.4059967502704461E+00 
0.9586054827056690E+00 
0.1707633862341116E+01 
0.2634252243120157E+01 
0.3733067811454947E+01 
0.5005663556309191E+01 
0.6447614701968830E+01 
0.8049956086568744E+01 
0.9806270415536372E+01 

Weights (wi) 

0.2775596224308371E+00 
0.5900612562744907E+00 
0.8478610527159362E+00 
0.1088510946164213E+01 
0.1323732065869006E+01 
0.1534838877513932E+01 
0.1719048349027934E+01 

0.4810701202067075E-01 
0.2505848757761927E+00 
0.6047137247359728E+00 
0.1097956904569217E+01 
0.1718338718562377E+01 
0.2456116758149593E+01 
0.3304098340771468E+01 
0.4257638182548677E+01 
0.5314792420007071E+01 
0.6476281670685671E+01 
0.7744192070244406E+01 
0.9119761690912472E+01 
0.1060243019989989E+02 
0.1219107734541850E+02 
0.1388654365182865E+02 
0.1569478151303984E+02 
0.1762993064234310E+02 

0.2021326824744206E+00 
0.4452920131070853E+00 
0.6549257007902238E+00 
0.8399190894283777E+00 
0.1012522786957398E+01 
0.1185698158021533E+01 
0.1358749093234873E+01 
0.1523775992304074E+01 
0.1681530325372958E+01 
0.1839363349513445E+01 

Error 

0.107E-02 

0.398E-04 

0.1231104634892695E+00 
0.2802783031579153E+00 
0.4258197681747696E+00 
0.5586462093341786E+00 
0.6804909782597703E+00 
0.7938674951201829E+00 
0.9013184216898933E+00 
0.1005434048854524E+01 
0.1109016499341237E+01 
0.1214353975155841E+01 
0.1321691619491553E+01 
0.1429331461933850E+01 
0.1535781285935049E+01 
0.1641633199457229E+01 
0.1750408322216728E+01 
0.1869608472411435E+01 
0.2013038988665553E+01 

0.156E-07 

31 



Table 5: Quadratures for complex exponentials (continued) 

Quadratures for the integral 

roo 
/    e~X2dx, 

Jo 

under the condition that z € C lies in the region D of the complex plane depicted in Figure 1. 

N Nodes (a;,-) Weights (w{) Error 

26 0.3186852812707167E-01 
0.1670696511352561E+00 
0.4070892206145096E+00 
0.7472439175044331E+00 
0.1182020706329825E+01 
0.1705877918170689E+01 
0.2313727921958910E+01 
0.3001165447553827E+01 
0.3764536084546370E+01 
0.4600933023898150E+01 
0.5508181675990506E+01 
0.6484841722444765E+01 
0.7530228834188133E+01 
0.8644426324529564E+01 
0.9828211695813383E+01 
0.1108280524626372E+02 
0.1240944939152817E+02 
0.1380901099033861E+02 
0.1528185219684248E+02 
0.1682806304875190E+02 
0.1844797932809189E+02 
0.2014289281830454E+02 
0.2191599603042421E+02 
0.2377386163950739E+02 
0.2572922307071097E+02 
0.2780603356526977E+02 

0.8168641985324435E-01 
0.1882692109574778E+00 
0.2909692905166523E+00 
0.3884080535348131E+00 
0.4802140096002388E+00 
0.5666489183411501E+00 
0.6483159527750231E+00 
0.7259502257876793E+00 
0.8003069049756682E+00 
0.8721245141158127E+00 
0.9421323128655350E+00 
0.1011073349889977E+01 
0.1079715704282156E+01 
0.1148813015862887E+01 
0.1218968645024915E+01 
0.1290432847974804E+01 
0.1363002295760370E+01 
0.1436177127644119E+01 
0.1509511398129948E+01 
0.1582954591205827E+01 
0.1657078657112459E+01 
0.1733260266399871E+01 
0.1814015981921987E+01 
0.1903865269011978E+01 
0.2011585306477846E+01 
0.2156295623247961E+01 

0.801E-12 

32 



Table 6: Quadratures for complex exponentials (continued) 

Quadratures for the integral 

t°° 
/    e-**dx, 

Jo 

under the condition that z £ C lies in the region D of the complex plane depicted in Figure 1. 

N Nodes (ZJ) Weights (wi) Error 
32 0.2599836293936463E-01 

0.1365267137471029E+00 
0.3335929178284293E+00 
0.6144848200204676E+00 
0.9757788966059570E+00 
0.1413764904033582E+01 
0.1924760915837073E+01 
0.25053220245434 78E+01 
0.3152355883303843E+01 
0.3863171917607857E+01 
0.4635491817809779E+01 
0.5467443320214809E+01 
0.6357552049608270E+01 
0.7304739365689955E+01 
0.8308328039815608E+01 
0.9368051427922781E+01 
0.1048405410784282E+02 
0.1165686219043638E+02 
0.1288729607812993E+02 
0.1417631366171486E+02 
0.1552481519724356E+02 
0.1693348466077443E+02 
0.1840274326790348E+02 
0.1993284537567664E+02 
0.2152409758022736E+02 
0.2317716791120881E+02 
0.2489347969157359E+02 
0.2667574373640977E+02 
0.2852878296929011E+02 
0.3046102218822619E+02 
0.3248756039307094E+02 
0.3463653566705793E+02 

0.6666723984893712E-01 
0.1541635906448656E+00 
0.2395065808061905E+00 
0.3216997252047818E+00 
0.4002647717267098E+00 
0.4750901483689786E+00 
0.5463258676163205E+00 
0.6142802064945914E+00 
0.6793389599054632E+00 
0.7419135289744640E+00 
0.8024143819948454E+00 
0.8612429338113290E+00 
0.9187946472618356E+00 
0.9754669332016366E+00 
0.1031665911277885E+01 
0.1087805382732233E+01 
0.1144289073127857E+01 
0.1201466511491073E+01 
0.1259564363290567E+01 
0.1318623693719137E+01 
0.1378494220804057E+01 
0.1438913247537656E+01 
0.1499642611759877E+01 
0.1560607527964651E+01 
0.1622001781246697E+01 
0.1684367617089771E+01 
0.1748695093705612E+01 
0.1816615869561691E+01 
0.1890833030920412E+01 
0.1976151351204436E+01 
0.2082162437141457E+01 
0.2231151873780132E+01 

0.282E-14 

33 



Table 7: Quadratures for exponentials multiplied by IQ 

Quadratures for the integral 

1    I0(xy)e~xtdx, 
o 

under the condition that t G [1,500] and y € [0,t - 1]. 

N Nodes (x,) Weights (wi) Error 

6 0.2014951814758335E-02 
0.1524995123116156E-01 
0.6752356088881507E-01 
0.2501565900307728E+00 
0.8236005667135590E+00 
0.2511917343393000E+01 

0.5609959210156781E-02 
0.2486640535654579E-01 
0.9333052982723889E-01 
0.3114318476382451E+00 
0.9419185523143980E+00 
0.2783935122763889E+01 

0.997E-03 

8 0.1310754453518395E-02 
0.8427815046421337E-02 
0.2934337237542595E-01 
0.8663331921085451E-01 
0.2362895983874226E+00 
0.6083828926140039E+00 
0.1496074584403707E+01 
0.3613104405570935E+01 

0.3522290544269296E-02 
0.1188533050797089E-01 
0.3342585308732757E-01 
0.8985909963205312E-01 
0.2297963615059060E+00 
0.5600968338362269E+00 
0.1320244303895297E+01 
0.3253613362413727E+01 

0.892E-04 

14 0.6424288534795956E-03 
0.3562319666990144E-02 
0.9643424057074440E-02 
0.2074298599770349E-01 
0.4057928260022333E-01 
0.7600572280169251E-01 
0.1390443053485344E+00 
0.2503136051566992E+00 
0.4447622918282108E+00 
0.7811276346003586E+00 
0.1357818162257100E+01 
0.2341992534236977E+01 
0.4036529413075654E+01 
0.7126502974662635E+01 

0.1667964367860395E-02 
0.4298903067080389E-02 
0.8159545461265918E-02 
0.1463864640961027E-01 
0.2614391453322226E-01 
0.4665755537868725E-01 
0.8276361628521883E-01 
0.1454478222995341E+00 
0.2529871458046016E+00 
0.4357009925372973E+00 
0.7446059596729966E+00 
0.1271434906786924E+01 
0.2216807353831690E+01 
0.4302367103374836E+01 

0.900E-07 

34 



Table 8: Quadratures for exponentials multiplied by 7o (continued) 

Quadratures for the integral 

TOO 

/    I0(xy)e-Xidx, 
Jo 

under the condition that t € [1,500] and y € [0,t - 1]. 

N Nodes (z,) Weights (w{) Error 
24 0.3495789092315762E-03 

0.1870021782900649E-02 
0.4726267824851739E-02 
0.9151716313193496E-02 
0.1554236980028004E-01 
0.2452696840462340E-01 
0.3706303150690139E-01 
0.5456277459785074E-01 
0.7905495952668643E-01 
0.1134006713086074E+00 
0.1615933468425095E+00 
0.2291729794308585E+00 
0.3238013639554152E+00 
0.4560558428504051E+00 
0.6405113416979851E+00 
0.8972279324556263E+00 
0.1253809582199313E+01 
0.1748318313157252E+01 
0.2433578887375728E+01 
0.3384010828873551E+01 
0.4707795467897619E+01 
0.6572440958883276E+01 
0.9272736577094724E+01 
0.1349943616527142E+02 

0.9002840624465873E-03 
0.2160252603038041E-02 
0.3590338301868660E-02 
0.5325399369607390E-02 
0.7559106650189445E-02 
0.1056758825931061E-01 
0.1473724813105991E-01 
0.2059685692839059E-01 
0.2885941258668471E-01 
0.4049079881256631E-01 
0.5680844261155735E-01 
0.7961469039423471E-01 
0.1113872397913262E+00 
0.1555264308649468E+00 
0.2166942382013035E+00 
0.3012922008808448E+00 
0.4181453830530776E+00 
0.5795680006227947E+00 
0.8031688787093632E+00 
0.1115348337169697E+01 
0.1559213913124744E+01 
0.2216187240183199E+01 
0.3282974439738362E+01 
0.5529398603135539E+01 

0.925E-12 

35 



Table 9: Quadratures for exponentials multiplied by I0 (continued) 

Quadratures for the integral 

f°° /    I0(xy)e-Xtdx, 
Jo 

under the condition that t € [1,500] and y £ [0,t- 1]. 

N Nodes (x,) Weights (wi) Error 

29 0.2855179413353365E-03 
0.1519624696728258E-02 
0.3804359141657344E-02 
0.7260138000706486E-02 
0.1208205371062810E-01 
0.1856564543199398E-01 
0.2714156753309568E-01 
0.3842017800878239E-01 
0.5324783256625659E-01 
0.7277755829761968E-01 
0.9855788611173273E-01 
0.1326465035778468E+00 
0.1777590387840778E+00 
0.2374657658898870E+00 
0.3164509240422835E+00 
0.4208524457939620E+00 
0.5587051648321601E+00 
0.7405185479404663E+00 
0.9800319873390735E+00 
0.1295209795621391E+01 
0.1709570851677607E+01 
0.2254009385987865E+01 
0.2969389638669206E+01 
0.3910476327629495E+01 
0.5152430007642100E+01 
0.6802867813529709E+01 
0.9027979519502084E+01 
0.1212289908066820E+02 
0.1679085599535762E+02 

0.7344503079351386E-03 
0.1744538390662211E-02 
0.2844687196642974E-02 
0.4098961298933580E-02 
0.5593550200298448E-02 
0.7444670271885530E-02 
0.9807968524698940E-02 
0.1288914176031762E-01 
0.1695687345717790E-01 
0.2235879759838917E-01 
0.2954235698585380E-01 
0.3908423859367898E-01 
0.5173159700695577E-01 
0.6845695550893067E-01 
0.9052903520482935E-01 
0.1196036182345700E+00 
0.1578409524693449E+00 
0.2080593451794129E+00 
0.2739397750144418E+00 
0.3603059290242059E+00 
0.4735231867763476E+00 
0.6221016600956893E+00 
0.8176841100086656E+00 
0.1076831175000068E+01 
0.1424628439002124E+01 
0.1902988149814232E+01 
0.2593285548365225E+01 
0.3696550722303479E+01 
0.6009492062220468E+01 

0.299E-14 

36 



Table 10: Quadratures for exponentials multiplied by J0 

Quadratures for the integral 

/•oo 

/    J0(xy)e-Xtdx, 
Jo 

under the condition that t £ [1,4] and y € [0,4\/2~]. 

N Nodes (x{) Weights (wi) Error 
8 0.1093474676900044E+00 

0.5176974101534121E+00 
0.1133065916111916E+01 
0.1881350151107404E+01 
0.2717854096012053E+01 
0.3616502749074490E+01 
0.4562710533038212E+01 
0.5549008853485283E+01 

0.2710750266277354E+00 
0.5276915884394641E+00 
0.6915150441387948E+00 
0.7983440040645204E+00 
0.8716416012135397E+00 
0.9264383911692414E+00 
0.9729462225948307E+00 
0.1024138658446855E+01 

0.162E-02 

12 0.7685522448236467E-01 
0.3802271685596512E+00 
0.8629501667245919E+00 
0.1477406574242533E+01 
0.2190593072512602E+01 
0.2979188555054684E+01 
0.3826805213168235E+01 
0.4722181214285143E+01 
0.5657828852278510E+01 
0.6629008403962641E+01 
0.7632911519449263E+01 
0.8669258567695921E+01 

0.1937803229242497E+00 
0.4024780894501363E+00 
0.5551232854865536E+00 
0.6684012296815303E+00 
0.7541446224405415E+00 
0.8203905361353097E+00 
0.8731017778158731E+00 
0.9167109597437153E+00 
0.9545728875259875E+00 
0.9893709749159459E+00 
0.1023874368056413E+01 
0.1067824933823433E+01 

0.709E-04 

37 



Table 11: Quadratures for exponentials multiplied by Jo (continued) 

Quadratures for the integral 

/    Jo{xy)e~xtdx, 
Jo 

under the condition that t € [1,4] and y € [0,4\/5]. 

N Nodes (x,-) Weights (wi) Error 
21 0.4557110658309451E-01 

0.2345692419777160E+00 
0.5560507435597863E+00 
0.9888622621190326E+00 
0.1514051750681985E+01 
0.2116308405894669E+01 
0.2783466404955423E+01 
0.3505774922334249E+01 
0.4275358227777114E+01 
0.5085850421343891E+01 
0.5932129958898720E+01 
0.6810110232637652E+01 
0.7716569940856932E+01 
0.8649018954485772E+01 
0.9605599035641322E+01 
0.1058501999437337E+02 
0.1158653269800637E+02 
0.1260993904708917E+02 
0.1365563090220990E+02 
0.1472471197434301E+02 
0.1582111587898742E+02 

0.1162693279863745E+00 
0.2587357630437822E+00 
0.3805968474435821E+00 
0.4818526125575090E+00 
0.5659864564983776E+00 
0.6365120448492290E+00 
0.6961876640755223E+00 
0.7471226714069135E+00 
0.7909873646366727E+00 
0.8291470860681295E+00 
0.8627341849390908E+00 
0.8926928974293094E+00 
0.9198161427100997E+00 
0.9447809312411800E+00 
0.9681847744461964E+00 
0.9905857720543664E+00 
0.1012551797552972E+01 
0.1034729712476950E+01 
0.1057973242328095E+01 
0.1083960111883219E+01 
0.1123223099240344E+01 

0.553E-07 

38 



Table 12: Quadratures for exponentials multiplied by JQ (continued) 

Quadratures for the integral 

/     J0(xy)e~xtdx, 
Jo 

under the condition that t € [1,4] and y € [0,4\/5]. 

N Nodes (x{) Weights (wi) Error 

31 0.3135427831034307E-01 
0.1633283571233953E+00 
0.3938519939248281E+00 
0.7134977521472219E+00 
0.1112086865038666E+01 
0.1580107134125432E+01 
0.2109237828913374E+01 
0.2692380266283717E+01 
0.3323499813712884E+01 
0.3997438592537748E+01 
0.4709757745640057E+01 
0.5456619026749223E+01 
0.6234697842382201E+01 
0.7041117206272996E+01 
0.7873394668593335E+01 
0.8729397582414611E+01 
0.9607304495127067E+01 
0.1050557184595927E+02 
0.1142290582410390E+02 
0.1235823954272516E+02 
0.1331071586594676E+02 
0.1427967645292451E+02 
0.1526465797627137E+02 
0.1626539716056547E+02 
0.1728184746281412E+02 
0.1831421215592517E+02 
0.1936300165981823E+02 
0.2042912676709522E+02 
0.2151404706129260E+02 
0.2262012600158427E+02 
0.2375360482790972E+02 

0.8024339887513055E-01 
0.1826480678501762E+00 
0.2767843166469057E+00 
0.3607878783606646E+00 
0.4347972857765461E+00 
0.4998566920961263E+00 
0.5572245708288816E+00 
0.6080577723352450E+00 
0.6533243161908575E+Q0 
0.6938153813251570E+00 
0.7301846396770468E+00 
0.7629849054856576E+00 
0.7926941021324604E+00 
0.8197316250932437E+00 
0.8444685010430712E+00 
0.8672343080184358E+00 
0.8883227316567794E+00 
0.9079967283507420E+00 
0.9264937318864332E+00 
0.9440311133071873E+00 
0.9608120820932964E+00 
0.9770323352089769E+00 
0.9928880149352948E+00 
0.1008585996949826E+01 
0.1024358393992377E+01 
0.1040484810479409E+01 
0.1057329638354610E+01 
0.1075408955912917E+01 
0.1095542344669040E+01 
0.1119613828562103E+01 
0.1159632125663126E+01 

0.195E-10 

39 



Table 13: Quadratures for exponentials multiplied by «To (continued) 

Quadratures for the integral 

/     J0(xy)e~xtdx, 
Jo 

under the condition that t € [1,4] and y € [0,4v^]- 

N Nodes (xi) Weights (wi) Error 

40 0.2450466782681923E-01 
0.1282174857176023E+00 
0.3113726824539808E+00 
0.5689058522320320E+00 
0.8947716487384897E+00 
0.1282740805986842E+01 
0.1726889168240672E+01 
0.2221829818237509E+01 
0.2762775128318641E+01 
0.3345508771449190E+01 
0.3966321542990838E+01 
0.4621940741778159E+01 
0.5309466588865855E+01 
0.6026319872772099E+01 
0.6770200467500875E+01 
0.7539054647612656E+01 
0.8331048881923509E+01 
0.9144548183658569E+01 
0.9978097658074295E+01 
0.1083040639472408E+02 
0.1170033322583332E+02 
0.1258687411609641E+02 
0.1348915109370842E+02 
0.1440640271349045E+02 
0.1533797609080401E+02 

(Continued in 

0.6278240289055225E-01 
0.1441452770046284E+00 
0.2213018947962683E+00 
0.2927436383298983E+00 
0.3579417172934986E+00 
0.4170055991300023E+00 
0.4703924681663025E+00 
0.5186914865873826E+00 
0.5624975493703959E+00 
0.6023527423690355E+00 
0.6387284183350381E+00 
0.6720275534119337E+00 
0.7025949580565075E+00 
0.7307287944249567E+00 
0.7566905396059194E+00 
0.7807125897154367E+00 
0.8030036866777486E+00 
0.8237527017133555E+00 
0.8431313322224179E+00 
0.8612961564381806E+00 
0.8783903510592598E+00 
0.8945452599331251E+00 
0.9098819208500799E+00 
0.9245126105589752E+00 
0.9385424474160881E+00 

the next table) 
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Table 14: Quadratures for exponentials multiplied by JQ (continued) 

Quadratures for the integral 

Jroo 
'     J0(xy)e~xtdx, 
o 

under the condition that t € [1,4] and y € [0,4-y/2] 
N Nodes (xi) Weights (u?j) Error 

40 (Continued from the 
0.1628332058271154E+02 
0.1724198323818701E+02 
0.1821360621166772E+02 
0.1919792646634440E+02 
0.2019477834484074E+02 
0.2120410011858627E+02 
0.2222594665494397E+02 
0.2326051184537432E+02 
0.2430816659609159E+02 
0.2536951778065644E+02 
0.2644549219792192E+02 
0.2753746108815434E+02 
0.2864745668803461E+02 
0.2977833401798621E+02 
0.3093837103779525E+02 

preceding table) 
.9520710907702972E+00 
.9651945915710470E+00 
.9780074909877168E+00 
.9906053454228810E+00 
.1003088034610363E+01 
.1015564634343247E+01 
.1028161001682954E+01 
.1041032846271463E+01 
.1054383431852286E+01 
1068492599609564E+01 
1083742894323642E+01 

.1100713259554107E+01 
1120408914213389E+01 
1144615248532595E+01 
1182108938213342E+01 

0.147E-13 

41 


